
E-ISSN : 2798 – 4664 53

International Applied Business and Engineering Conference 2021
August 25, 2021, Riau, Indonesia

Design and Implementation: JavaFX Face Detection
with Scene Builder and NetBeans IDE

1st Syefrida Yulina
Information System Department

Politeknik Caltex Riau
Pekanbaru, Indonesia

syefrida@pcr.ac.id

Abstract—JavaFX face detection is an application widely
used to detect and recognize faces in digital images. One of the
challenging problems in the image processing is how to develop
and design an automatic face recognition application using
JavaFX technology. JavaFX is a library of Java that is used to
build rich internet applications (RIA) which can run across
several platforms such as Desktops, Mobile Devices, TVs,
Tablets, etc. Design and implementation of this application
applies the concept of model-view-controller using framework
Scene Builder and Netbeans IDE. Scene Builder is used as a tool
to add components of GUI in the view that can produce
document called FXML. Netbeans IDE is an integrated
development environment for FXML document editing and
maintaining the connection between view and controller. In this
research stages of creating JavaFX Face Detection application
are started with requirements identification, followed by design
of UI components in Scene Graph, integration of the scene
builder panels, and then making controller. An application is
implemented using the stages of JavaFX.

Keywords—Face Detection, FXML, Netbeans IDE, Scene
Builder, Scene Graph

 INTRODUCTION

Face detection applications are very necessary in the
process of face recognizing. It can gain informations from
image or video by using computer algorithms. Many previous
studies have developed face detection application using
certain programming language but lack of them using Java as
a programming language to develop and implement an
application based on graphical user interface.

JavaFX is next generation client application platform
build on Java. It is a set of graphics and media packages that
enables developers to design, create, test, debug, and deploy
rich client applications that operate consistently across
diverse platforms[1][2]. The interface and implementation of
JavaFX application are defined separately from its behavior.
By using model-view-controller technique, the controllers
handle interactions of interface, while the views contain
visual attribute/graphical components of interface[3][4].
JavaFX controller are written in Java programming language,
and views in the framework are declared in FXML
documents[5], where it is written in custom markup language
based on the Extensible Markup Language(XML). A

controller in JavaFX is used to make GUI interaction in the
view class. The views are represented in a tree structure
called a scene graph. Scene graph maintains the nodes
(graphical components) in a branch node or the leaf node. The
first node in tree is called the root node.

Three attributes to make interaction between nodes: 1)
fx:controller attribute; 2) fx:id attribute; and 3) various event
handler attributes. The fx:controller attribute is used to
associate the controller with the view by setting the root
node’s value of the attribute to the name of the controller
class. The fx:id attributes link field declaration in the
controller with their corresponding component instances in
the view, to enable programmatic manipulation. Event
handler attributes assign method declaration in the controller
as the recipients of control flow when events are fired by view
components. Event handler are required to take a single
argument of a type extending javafx.event.Event.

FXML is a textual data format, can be edited in text editor
called Scene Builder. JavaFX scene builder enables to
quickly design JavaFX application by dragging a UI
component from a library of UI components and dropping it
into a content view area[6][7][8]. The FXML code for UI
layout is automatically generated. Scene Builder can be used
as a standalone design tool and can be used in conjuction with
Java IDEs. IDE can write, build, and run the controlller
source code. JavaFX Scene Builder includes key features
such as: a drag and drop WYSIWYG interface, tight
interaction with the Netbeans IDE, automatic FXML code
generation, live editing anf preview features, access to the
complete JavaFX GUI controls library, ability to add custom
GUI components to the library, 3D support, support for Rich
Text, JavaFX Scene Builder kit, CSS support and cross-
platform support.

In this paper, we design an application for face detection
with Scene Builder, which integrated with Netbeans IDE. The
integration enables Scene Builder by opening FXML
document, run the application, and generate controller source
file.

E-ISSN : 2798 – 4664 54

 RESEARCH METHOD

A. Requirements Identification

This research use Netbeans IDE which facilitate JavaFX
application development. It builds the connection between
views and controller, and the mechanism for source code
analysis and manipulation. The link between view and its
controller is divided into three parts (Figure 1)

 The fx:controller attribute is used to associate the view
and controller. It is set as the scene graph’s root node.
The scene graph for face detection application is
shown in figure 2.

 The fx:id attributes are declared as component
instance in the view from field declaration in the
controller. Three fx:id are used: btnDetectFace,
preProcessImage, originalImage

 Event handler attributes is assigned from various
component events in the controller. onAction()
handle the process from source image to detect the
face/faces.

Atributes in FXML represent a property of each class
instance which it has static property and event handler.

Fig. 1. The Requirements Identification for Face Detection Application

B. Design UI Component in Scene Graph

To build this application, the hierarchical scene graph
(Figure 2) should first show the BorderPane layout as a root
node, and then it is followed by HBox layout and VBox
layout in the next level (child node). Each child node contains
UI components such as: ImageView, Label, and Button (leaf
node). The implementation of this scene graph can be seen in
Figure 5.

BorderPane lays out the children in top, left, right,
bottom and center position. The center node in BorderPane is
filled the HBox layout which position all its child nodes in
horizontal row. VBox is the child nodes of HBox. Each of
VBox contains two child nodes: ImageView and Label in first
of VBox, two Buttons in the second VBox, and ImageView
and Label for the last VBox.

The ImageView component is a node used for displaying
original image and result image after face detected. The
Button component is a node which can respond to mouse
event by implementing an event handler to process the mouse
event. The view for this JavaFX face detection is shown in
figure 3.

Fig. 2. Scene Graph for UI Components

Fig. 3. The View of Application in Scene Builder

C. Integration of the scene builder panels (FXML & View)

Scene builder’s library, document and content panels are
extracted to Netbeans view in FXML document. Library
panel display a collection of the GUI components that are
used to build the view. Document panel is comprised of two
sub-panels: the Hierarchy and the Controller panel. The
Hierarchy panel display the view components in a tree
structure. The Controller panel manage the view to its
controller, which has an input field for the controller’s name,
as well as an overview of all the fx:id declaration in the view.
The content panel display a static preview of view’s content
will look like when rendered in a running application. The
FXML document loads component instances declared in the
view into the controller’s field declaration.

D. The Controller

Scene builder component implements the connection with
controller. The controller input field and event handler (in
fx:id’s) are declared with the notation @FXML in Java class.
This notation integrates scene builder’s component to be
recognized by its controller. The controller enables field and
event handler access through FXML loader by importing
javafx.fxml.FXML. The FXML loader is responsible for
loading the FXML source file and returning the value of each
component in the scene graph.

The input fields such as: origrinalImage and
preprocessImage attibutes are declared by importing package
javafx.scene.image.ImageView, while btnDetectImage and
btnPreprocess attributes import package
javafx.scene.control.Button. Event handler utilized to process
images to be able to detect faces is onAction() to call method
loadImage() dan detectAndDisplay(). The method of
loadImage() requests user to select image file to be
processed, and then the method of preProcess() will process
the images that have been input to be grayscale image by
using the library open source version 3.4 from OpenCV. The
method of detectAndDisplay() will process images that have
been input for faces to be able to be detected by using the
feature of Haar Cascade Classifier. This feature is obtained
from the open source library of OpenCV by importing the
package org.opencv.objdetect.CascadeClassifier.

E-ISSN : 2798 – 4664 55

 RESULT AND DISCUSSION

In this research, JavaFX application to detect faces in
images has been designed and implemented by using Scene
Builder and Netbeans IDE (shown in Figure 4). The
preliminary stage of designing this application is by
determining its requirements such as fx:controller, fx:id, and
event handler. What comes next is that every single GUI
component needed is designed into a scene graph to view the
component structure used in the display. The integration of
the display in scene builder uses file FXML which is
recognized by controller so that every component can be
declared and processed in the programming syntax. In the
controller, various libraries required have been imported
from JavaFX and library OpenCV.

Fig. 4. JavaFX Face Detection Application

The controller contains input field and event handler
using notation @FXML, which integrate the component to be
recognized. It shown in Figure 5.

Fig. 5. HomeController.java

While controllers can be easy to write event handlers in
script, it is preferable to define complex application logic in
a compiled using Java language. The fx:controller attribute
allows a caller to link a "controller" class with an FXML
document. It is a compiled class that implements the "code
behind".

The view from scene builder is generated to Netbeans in
FXML code (Figure 6 and Figure 7). In FXML, all classes
are imported such as java.lang package to following
processing import the VBox, ImageView and Button classes.
The root node assigns the fx:controller to connect the view
and the controller. The HBox layout as the child node on the
level 1 is used to arrange the other series of nodes in a single

row, and the VBox layout as the child node on the level 2 is
used to arrange the other nodes in single column. The VBox
layout contains UI components with their fx:id.

Each property for an object in FXML is being set. Two
ImageView components have fx:id originalImage and fx:id
preprocessImage. The fx:id original image is then assigned to
contain the original image from the file chooser in which fx:id
preprocessImage is assigned to show the preprocessed image.
One button component has fx:id btnDetectFace which is
declared to process the image and detect the face(s). In
document panel, the controller is setting up the value of
controller class: HomeController.java.

Fig. 6. Home.FXML

Fig. 7. Home.FXML in Scene Builder

 CONCLUSION

In the stage of UI component integration in the display on
the controller, there are several things that have to be fulfilled,

E-ISSN : 2798 – 4664 56

such as: assigning fx:controller, fx:id and event handler in UI
component must be performed in document panel in Scene
Builder so that the display can be recognized by the
controller; the use of @FXML notation must be added to the
attribute declaration and method to process the input; the
FXML document loader should be assigned with the
controller’s name. JavaFX face detection is an application to
detect face using image as an input. It is develop and
implement based on the stages: requirements identification,
design of UI components in Scene Graph which simplify
developer to design based on hierarchy of components,
integration of the scene builder panels, and controller.

REFERENCES
[1] O. Corporation, “Introduction to FXML,” 2012. [Online]. Available:

https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-
files/introduction_to_fxml.html [Accessed: 20-Mar-2020].

[2] O. Corporation, “JavaFX: Getting Started with JavaFX,” 2014.
[Online]. Available: https://docs.oracle.com/javase/8/javafx/get-
started-tutorial/index.html [Accessed: 20-Mar-2020].

[3] G. Kruk, O. Alves, L. Molinari, and E. Roux, “Best practices for
efficient development of JavaFX applications,” JACoWPublishing, pp.
1078–1083, 2018, doi: 10.18429/JACoW-ICALEPCS2017-
THAPL02.

[4] I. Science, “Comparison and implementation of graph visualization
algorithms using JavaFX,” 2016.

[5] A. Pomaroli, JavaFX Programming CookBook. Hot Recipes for
JavaFX Development. Exelixis Media, 2016.

[6] H. Qluon, “Scene Builder Documentation,” 2016. [Online]. Available:
https://docs.gluonhq.com/scenebuilder/ [Accessed: 20-Mar-2020].

[7] T. Ask, “Tobias Ask Master ’ s thesis sb4e : an open source integration
of the Scene Builder GUI editor into the Eclipse IDE Facilitating
JavaFX application development with an extension to the IDE,” no.
June, 2019.

[8] A. Alkhars and W. Mahmoud, “Cross-Platform Desktop Development
(JavaFX vs. Electron),” 2017.

