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Abstract—Early intervention to change worn cutting tool 
before its failure could avoid unexpected machine downtime. A 
mathematical based predictive model is employed to estimate 
early tool failure using vibratory signal. The statistical-based 
signal analysis technique as wear tracking analysis is applied in 
the predictive model to outline the data pattern concerning wear 
and number of cutting. The signal analysis based on the changes 
in the vibration signatures that captured from accelerometer 
during the milling operation throughout the tool life. A 
significant correlation between the tool flank wear and the 
statistical index has achieved. The tool life as a function of the 
acceleration amplitude of assimilated vibrations. Selected curve 
fitting equations are considered to decide the transition point 
between the steady state and failure region. The result shows a 
significant expectation of determining the second transition 
point with estimate value of 0.235mm below the rapid wear 
(<0.25mm). The accuracy, reliability and robustness of the 
predicted transition point were then parallel against another 
sensing elements where it predicts almost the same transition 
point. The de-termination of the second transition point will 
assist the preparation to anticipate the tool to be bro-ken. The 
results reflected that the model gives reasonable estimation of 
tool life and the transition points at which changes of the region 
transpire.  

Keywords—Cutting Tool Wear, Signal Analysis, Z-rot, 
Piezofilm-Based Sensor, Vibration 

 INTRODUCTION 

The variation in cutting condition influence and alters the 
momentary and unpredictable cutting dynamic process and 
thus affects the cutting tool condition and process stability. As 
vibration be-come the primary effect, cutting tool condition 
and machine tools ultimately pay the price with worn tool 
eventually fails and broken machines. A vibratory system in 
machining operations consist the machine tool, cutting tool, 
workpiece and cutting conditions create a complex dynamic 
behaviour [1]. Vibration signals are one of the most widely 
analysed because they provide a thorough in-sight into the 
metal cutting process and considerably less complex in nature, 
more inclusive, and convenient [2]. The metal cutting process 
naturally produces vibration signal apart from mechanical 
vibration harvest from the tool wear and the cutting conditions 

such as breakage [3]. Many researchers present vibration 
analysis for tool condition monitoring. Dimla and Lister [4] 
found that vibration signal is most tool wear sensitive to 
measure vibration signals in time and frequency domain 
analysis to predict tool wear. Chen et al. [5], Wang et al. [6], 
Elangoyan et al. [7], Rao et al. [8] and Rajesh and Namboothi 
[9] used vibration signals to measure reliability and wear 
correlation. Therefore make a prediction and develop tool 
condition monitoring successfully comply with selected 
method respectively. Recently, Aghdam et al. [10] captured 
wear sensitive features and derived from autoregressive 
moving average (ARMA) model of the recorded signals. The 
outputs of ARMA metric can also be used to provide reliable 
predictions for the tool. 

The determination of transition point between mild and 
severe wear was the starting point. Mild wear is considered as 
acceptable wear state whereas the transition to severe 
conditions often represents a change to commercially 
unacceptable situations [11]. Therefore, the wear map was 
developed [12]–[15]. The well-known tool wear progression 
in machining describe the flank wear versus cutting time. The 
wear initially increases rapidly and later on gradually reduces 
to a constant rate until tool failure is reached. The wear rate 
was almost constant where there was no obvious transition 
from the steady-state in the failure region [16]. The point 
between the steady-state and failure region is known as the 
second transition point, STP. 

Significant changes in the tool wear rate indicate the 
position of the transition time between the states. The values 
of the maximum wear corresponding to the first and second 
transition times are considered as the wear state criteria. The 
first and second criteria were found to be in the range of 0.05 
– 0.1mm and 0.15 – 1.00mm, respectively, depending on the 
type of the operation [17]. Previous researchers have classified 
flank wear into three conditions in their tool wear monitoring 
studies using different analyses such as using wavelet analysis 
[18], fuzzy logic [19] and neural networks [20]. It consists of 
Phase 1 flank wear (VB = 0 - 0.15mm) were classified as a 
normal phase. Phase 2 flank wear (VB = 015 - 0.25mm), 
classified as medium abnormal phase. Lastly, phase 3 flank 
wear (VB = 0.25 - 0.30mm), classified as critical abnormal 
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phase. The three-period curve of flank face wear value 
increases from the initial wear (normal phase), and the wear 
rate is kept at a high level. It is followed by the steady normal 
wear (medium abnormal phase), where the wear rate is 
decreased. When the rapid wear takes place, the wear rate is 
the highest compared with the initial and normal periods, and 
therefore, the cutting stability is low. Based on the 
phenomenon, the ideal tool life should be before the rapid 
wear [21] where the wear value maximum of 0.250mm where 
STP is located. These works have been carried out to develop 
a more favourable tool wear tracking using vibration signals 
and eventually to predict and estimate the second transition 
point from the steady-state region into the failure region in tool 
wear monitoring. Until this paper is written, there is no 
specific and well-established method to determine the STP. 
This paper is offering an alternative way by using the previous 
developed statistical analysis to track the severity of wear 
index. The index then become input to the sequence of two 
lower order of polynomials in search for the second 
intersection point that resemble the STP in tool wear phase. 

 MATERIALS AND METHOD 

An innovative, integrated rotating dynamometer was 
designed and constructed by Rizal to measure the cutting force 
in a wireless environment system [22]. This dynamometer 
utilised strain gauge that is mounted on legged cross beam 
transducer to measure three components of cutting force based 
on a rotating cutting force system as in Figure 1. Namely, main 
cutting force, Fc, thrust force, Ft and perpendicular cutting 
force, Fcn. Meanwhile an accelerometer, a thermocouple and 
strain gauge to measure torque are also built to the rotating 
dynamometer to build a multi sensor system.  

This sensor system is then used for tool wear monitoring 
in milling P20+Ni tool steel using end milling cutting tool 
insert was tungsten carbide with multi-layer PVD 
TiAlN/AlCrN grade ACP200 (Code: AXMT170504PEER-
G). A milling process experimental is prepared with various 
23 full factorial combinations of cutting speed (200 and 373 
m/min), feed rate (0.10 and 0.20 mm/tooth), radial depth of 
cut (0.4 and 0.6 mm) and axial depth of cut is kept constant at 
1mm. 

 
Fig. 1. Experimantal setup 

 STATISTICAL ANALYSIS METHOD 

The analysis produces Z-rot index as an input parameter 
that employs mathematical and statistical features (mean, 
standard deviation and Kurtosis) from signal data (such as 
force signal and vibration) [23]. The development of Z-rot 
predictive model (ZrPM) starts with the Z-rot tracking 
analysis method. Afterwards, ZrPM is determined to resolve 

the unclear transition point from the second region to the third 
region. The transition point will be assessed to several-
underlined curve fit-ting accordingly. The algorithm is 
summarized as presented in Figure 1. 

A. Z-rotation Method 

The selected features are suggested to among the best 
features to study wear correlation with signal amplitude [24]. 
It is based on a signal element variance scattering around its 
mean centroid. The method exhibits data pattern in defining 
the randomness of data features over the whole lifetime to 
diagnose inferences and expected to have more sensitivity 
toward amplitude and anomalies changes in a signal. These 
interpretations are beneficial for prediction and decision 
making such as in machine learning adaptation. It is also 
expected to be able to improve the wear progression curve 
which was unable to exhibit the three typical wear region for 
the cutting speed more than 120mm/min [25]. Compute the 
distance, r, for each data variable by subtracting the mean data, 
𝑠𝚤𝑔തതതത௬ from the data variable, 𝑠𝑖𝑔௬ to generate a zero-mean 
distribution [23]. 

𝑟 = (𝑠𝑖𝑔௬ − 𝑠𝚤𝑔തതതത௬)                             (1) 

 Based on the standard deviation and kurtosis value 
obtained, will gives the index, Z-rot, that indicates the current 
condition and records the wear evolution of cutting tool wear 
during the cutting process [23]. 

𝑍ோ =
ଵ

ே
ඥ𝜎௥

ସ𝐾௥                                 (2) 

 Z-rot is a tracking analysis kurtosis-based use to track the 
severity of wear. It is expected to show a healthy relationship 
over the wear evolution. 

B. Z-rot predictive model (ZrPM) 

Several numbers of complex damage phenomena are 
happening within these stages (steady state and failure region) 
and require better understanding. The events are the likelihood 
to produce different wear progression scenarios. The wear 
progression scenario is significantly essential to predict the 
length (time) and propagation rate of each stage to predict the 
second transition point of a remaining lifetime as depicted in 
Figure 2. 

 
Fig. 2. Flowchart of the Z-rot predictive model (ZrPM) 
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The first attempt in spotting the time of the second 
transition point (TPSTP), plot a linear fit (Eq. 3) on the scattered 
data points followed by 2nd (Eq. 4) and 3rd (Eq. 5) order of 
polynomial regressions to fit the trend line: 

 𝑓(𝑥) = 𝑎ଵ𝑥 + 𝑎଴                                (3) 

       𝑔(𝑥) = 𝑎ଶ𝑥
ଶ + 𝑎ଵ𝑥 + 𝑎଴                           (4)                                              

ℎ(𝑥) = 𝑎ଷ𝑥
ଷ + 𝑎ଶ𝑥

ଶ + 𝑎ଵ𝑥 + 𝑎଴                    (5) 

The decision to decide over the TPSTP is determining by the 
last intersection point between the linear and one of both 
polynomial regressions. The intersection point should not be 
extended too far outside the data. The choice is according to 
conditions:  

 At first, consider the last intersection point (TP3) 
between linear fit and the 3rd order of the polynomial. 
The intersection point must be within or under the total 
cutting time (TTotal cutting time) and has a bigger value from 
the other resulting last intersection point (TP2) between 
the linear and 2nd order of the polynomial. The 
expression as stated: 

TP3 < max (TTotal cutting) && TP3 > TP2             (6) 

 If the intersection point does not comply either one or 
both conditions above, the system will return to 
consider the TP2 resulted from crossing point between 
the linear and 2nd order of the polynomial.  

TP2 < max (TTotal cutting)                          (7) 

 RESULTS AND DICUSSION 

A. Vibration Signal 

Figure 3 and Figure 4 shows the time domain and 
frequency domain of vibration accelerations of the cutting 
process detected during the advancement of tool wear. It can 
be seen that dominant frequency activities occur at relatively 
low and middle-frequency regions. The high-frequency 
activities occur at low-frequency regions covering up to 
500Hz and contain the most condition indicating information 
about the cutting process. 

 
Fig. 3. Representative examples of Time domain and FFT analysis for the 
cutting vibrations (v = 200m/min, f = 0.1mm and d = 0.6mm) for experiment 
2 run 1 

 
Fig. 4. Representative examples of Time domain and FFT analysis for the 
cutting vibrations (v = 200m/min, f = 0.1mm and d = 0.6mm) for experiment 
2 run 23 

The magnitudes are also gradually increased with the 
advancement of tool wear and notably increased when the 
flank wear as in Fig. 3 has significantly developed from 
0.001mm (run 1) to 0.131mm (run 23). The other frequency 
activities take place around after 500Hz up to 1500Hz which 
is the reflection of the damped natural frequency of the tool-
workpiece system [26]. It can be seen in all experimental sets 
that characteristics of the frequency components located at 
the high-frequency region change with the advancement of 
wear. They occupy a larger frequency span around range 
between 500Hz and 1500Hz and their amplitudes rise when 
the severity of wear is increased. 

B. Flank Wear Response 

Figure 5 illustrates the statistic (Z-rot index) of the 
detected vibration acceleration signals at the mentioned 
cutting condition concerning the wear. During the very early 
phase of wear development, the amplitude of the vibration 
acceleration is slightly increased which is correspondingly 
reflected by the Z-rot. However, it is sometimes reduced when 
the wear starts developing on the tool’s cutting edges which is 
also indicated as reductions in the Z-rot index as well as in 
signal amplitude. Nevertheless, the amplitudes of the ensuing 
Z-rot are then gradually increased with the advancement of 
wear where amplitude variations are also observed in the 
frequency domain. When the wear is fully developed over the 
flank surfaces at the end of wear test, the amplitude of the 
vibration signal magnitude represented by Z-rot index is 
notably increased, and the symptoms of tool wear are 
favorably revealed in the vibration signal plotting alongside 
with other sensors related. Estimation the Second Transition 
Point (STP) 

 
Fig. 5. Z-rot index of the vibration accelerations magnitude of cutting 
process during the advancement of wear: a) Experimental set 5 – v = 
375m/min, f = 0.1mm, d = 0.4mm. b) Experimental set 6 – v = 375m/min, f 
= 0.1mm, d = 0.6mm. 
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C. Estimation of the Second Transition Point (STP) 

 The index was plotted using MATLAB software to see the 
variation within a certain time. The results of the machining 
tests and the analyses were portrayed together on the same 
graph for comparison and better understanding. The tool wear 
mechanisms trending is presented in figure 6. 

 Flank wear is the major failure pattern regardless the 
cutting speed. However, the tool wear is more critical at 
375m/min compared with that at 200m/min. It is difficult to 
express the failure numerically, and therefore, the data are 
hard to collect within the limited experiments, resulting in that 
the rake face wear is out of the consideration of tool life 
evaluation in this case. The example of every last intersection 
point between linear and the polynomial regression fitting 
respectively of Z-rot vs cutting time are shown in Figure 4. In 
the time domain and frequency domain extracted of an 
experiment set 1, the second transition point is achieved at 
about 58.53s and 57.65s (approximate wear VB = 0.250mm) 
separately before the tool begins to total failure. While, with 
different speed level, the second transition point is considered 
around 15.82s and 14.4s (approximate wear VB = 0.250mm). 
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Fig. 6. Z-rot index progression for two experiment conditions and the 
fittings of polynomial regression of 2nd order and 3rd order 

Both experiment condition was assigned to the maximum 
fit of 3rd order of the polynomial. As the 2nd order of 
polynomial would be detecting the STP earlier than what 3rd 
order of polynomial has. Comparing with the cutting speed 
200m/min, the time to reach second transition point wear rate 
is faster at 375m/min approximately after 15s, and the wear 
value reaches the wear criterion rapidly after 17second. The 
overall result arrangement is in Table I. 

D. The Relationship Between Vibration and Cutting Force 

The signal data is analyzed in time domain using Z-rot 
analysis and the illustration as in Figure 7.  
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Fig. 7. a) Experimental set 4 - v = 200m/min, f = 0.2mm, d = 0.6mm. b) 
Experimental set 7 - v = 375m/min, f = 0.2mm, d = 0.4mm 

Result validation of the model for estimating the transition 
times between the second and third states using vibration 
signal data, Z-rot prediction method also done on force signal 
data extracted simultaneously from the same experimental set. 
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The force signal data contain three components of cutting 
force based on a rotating cutting force system.  

From the example observations and analyses made in 
Figure 7, it is clear that the cutting vibrations do not 
necessarily have the same varying pattern as that of the cutting 
forces in machining with either a sharp tool or a worn tool. In 
machining with a sharp tool and with a worn tool, the cutting 
forces can be very close to each of experimental sets, but the 
vibration magnitude can be very different. In addition, larger 
cutting forces do not necessarily lead to larger vibration 
amplitudes. For example, Figure 5b shows the time domain 
resultant force in Z-rot index in machining with a sharp tool is 
higher than that in time domain Z-rot index for vibration 
acceleration. In summary, the cutting forces are determined by 
material property, tool geometry, the cutting conditions, and 
so on. The cutting forces not only determine the cutting 
vibration, but also by the structural rigidity (such as damping 
and stiffness) of the tool–work–machine system [27]. 

E. Overall Estimation of the Second Transition Point 

The outline of the overall result to estimate STP for the 
various condition, different sensors signal data (vibration, 
force components and torque) where vibration both in the time 
domain and in frequency domain while force and torque were 
analysed in time domain respectively as in Table I. 

TABLE I.  OVERAL TESTIMATION OF THE SECOND TRANSLASITION 
POINTS FOR VARIOUS MACHINING CONDITION 

Set 
Total cutting 

time (s) 
Predicted STP 

of Average 
Set 

1 64.06 56.71 ~ 0.210 

2 64.06 52.02 ~ 0.230 

3 32.03 27.08 ~ 0.210 

4 32.03 28.05 ~ 0.240 

5 34.16 30.66 ~ 0.250 

6 34.16 28.79 ~ 0.240 

7 17.08 15.57 ~ 0.250 

8 17.08 15.53 ~ 0.250 

Based on the observation made above, the predicted STP 
values are mostly similar at certain machining conditions. The 
predicted second transition point has an average of predicted 
wear 0.235mm as the ideal tool life should be before the rapid 
wear [22] as the maximum wear land width (VB) at steady 
state region is 0.250mm. The new statistical feature, Z-rot 
index have been carried out to as characteristic feature for tool 
wear tracking using vibration signals and eventually, ZrPM 
was able to predict and estimate the second transition point 
from the steady-state region into the failure region in tool wear 
monitoring.  

 CONCLUSION 

The resulting trend of the Z-rot index analysis is useful in 
determining the second transition point in wear phase. Using 
vibration signal, ZrPM identified the specific safe cutting time 
in every test sample. The method is proposed as an alternative 
autonomous technique to monitor cutting tool wear 
progression during the machining process. ZrPM is time 
savvy and successful for observing the tool wear phase and 
avoiding traditional direct tool wear observation. 
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