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Abstract.  The oil palm trees (Elaeis guineensis) is an important commodity in the plantation industry, and the classification 

of its varieties is crucial for enhancing productivity and harvesting efficiency. This study aims to apply Quantum 

Convolutional Neural Network (QCNN) as a method for classifying oil palm trees. QCNN integrates quantum computing 
principles into the architecture of convolutional neural networks, allowing for more efficient and accurate data processing. 

The data used in this research includes oil palm plantations located in the coastal areas of Bengkalis Island. Data acquisition 

was performed using a DJI Phantom 4 Pro drone, capturing vertical images from above. The classification process utilized 

key features extracted from the images using the QCNN algorithm. The results of the experiments show that QCNN 
achieved a training accuracy of 94.7% and a testing accuracy of 92.5%. Thus, this research makes a significant contribution 

to the development of oil palm tree classification technology and opens new opportunities for the application of quantum 

algorithms in agriculture. These findings are expected to assist farmers and researchers in identifying and managing oil 

palm tree varieties more effectively, thereby supporting the sustainability and productivity of the oil palm industry as a 

whole. 
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INTRODUCTION 

Oil palm (Elaeis guineensis) is a strategic commodity in Indonesia's plantation industry, with Indonesia having the 

largest oil palm plantation area in the world, particularly in Bengkalis Regency. According to the 2023 data from the 

Central Bureau of Statistics (BPS) of Bengkalis Regency, the region boasts an oil palm plantation area of 399,783.81 

hectares, with a production volume of 748,615.87 tons [1]. One of the main challenges in improving the productivity 

of oil palm plantations is the ability to accurately classify oil palm tree varieties. Proper classification is crucial for 

plantation management, from planting to harvesting, which ultimately contributes to increased yield and production 

efficiency. Coastal oil palm plantations in Bengkalis Regency face additional challenges, such as vulnerability to 

climate changes, including saltwater intrusion and temperature fluctuations, which affect the growth of oil palm trees. 

Moreover, the distinct soil characteristics and environmental conditions in coastal areas can influence the visual 

appearance of oil palm trees. Therefore, data collected from plantations in these regions must be carefully and 

accurately managed to address these variations. This necessitates the use of advanced technology capable of efficiently 

analyzing and classifying oil palm trees, especially for large areas like those in Bengkalis. 

In recent years, technological advancements, particularly in the field of Artificial Intelligence (AI), have opened 

new opportunities for addressing this classification issue. One of the most promising recent methods in image 

processing and classification is the use of Quantum Convolutional Neural Networks (QCNN). QCNN combines 

quantum computing principles with the architecture of convolutional neural networks (CNN), which are well-known 

for their effectiveness in pattern recognition from image data [2]. To support the collection of plantation image data, 

this research utilizes the DJI Phantom 4 Pro drone to capture vertical images from above the plantation areas on 

Bengkalis Island. This drone enables efficient and accurate data collection, which is then processed using the QCNN 

algorithm to classify oil palm trees. However, processing large-scale image data requires a computational approach 

that is both efficient and accurate, making the application of Quantum Convolutional Neural Networks (QCNN) 

critical in this context [3][4][5]. 

 

mailto:lipantri@polbeng.ac.id


 4thInternational Annual Conference   E-ISSN:2798-4664 
 

Proceeding Applied Business and Engineering Conference, [Bandar Lampung, 2024]  | 197  

 

Based on the background outlined above, the research questions for this study are as follows: How can Quantum 

Convolutional Neural Networks (QCNN) be applied to accurately classify oil palm trees in coastal plantation areas of 

Bengkalis Regency ? How effective are aerial images taken by the DJI Phantom 4 Pro drone in supporting the 

classification process using QCNN ? and How are the accuracy and efficiency results with several optimization 

methods in data classification training ? [6][7][8][9] 

METHODS 

In this research, the dataset used consists of two types, namely the palm tree dataset in the form of a collection of 

digital images taken from the DJI Phantom 4 Pro drone from several oil palm plantation locations in the coastal area 

of Bengkalis district along with the data samples: 

 

     
     

     

FIGURE 1. oil palm tree samples 

 

the second is a dataset of non-oil palm digital images and sample data: 

 

     
     

     

FIGURE 2. samples are not oil palm trees 

 

Each of these two datasets was then divided into two, namely a training dataset of 90 data and a testing dataset of 60 

data. 

Next, the design of the artificial neural network architecture using the quantum circuit approach consists of two 

main parts, namely the first part, namely the encoding part, which consists of 3 types as follows: 

 

FIGURE 3. Encoding ZFeatureMap 
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FIGURE 4. Encoding ZZFeatureMap 

 

 
FIGURE 5. Encoding EfficientSU2 

 

then the second part is the QCNN part as follows: 

 
FIGURE 6. QCNN architecture [10] 

 

 
FIGURE 7. Convolutional Layer 
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FIGURE 8. Pooling Layer 

 

Overall, the following are all the stages carried out in this research, which can be seen in the following image: 

 

 
FIGURE 9. All stages of the research 

 

RESULTS AND DISCUSSION 

The entire process in this research uses Qiskit on IBM Quantum and is assisted by Dell inspiron 3881 hardware 

with 16 GB RAM memory (DDR4 SDRAM), Intel(R) Core(TM) i7-10700F CPU @ 2.90 GHz (8 Core) Processor 

and System Windows 10 Home Single Language 64 Bit Operation. Following are the complete results of the 

experiments carried out. 

TABLE 1. Encoding ZFeatureMap 

 

optimization methods 
Accuracy (%) 

training testing 

ADAM [learning rate: 0.001; iteration: 1000; beta_1=0.9; beta_2=0.99] 78.76 79.57 

COBYLA [iteration: 1000] 89.21 91.23 

AQGD [iteration: 1000; momentum=0.25] 88.27 89.31 

NFT 88.78 88.85 

  

TABLE 2. Encoding ZZFeatureMap 

 

optimization methods 
Accuracy (%) 

training testing 

ADAM [learning rate: 0.001; iteration: 1000; beta_1=0.9; beta_2=0.99] 82.87 84.39 

COBYLA [iteration: 1000] 90.32 91.89 

AQGD [iteration: 1000; momentum=0.25] 90.16 90.24 

NFT 90.31 90.45 

 

TABLE 3. Encoding EfficientSU2 

 

optimization methods 
Accuracy (%) 

training testing 

ADAM [learning rate: 0.001; iteration: 1000; beta_1=0.9; beta_2=0.99] 91.98 91.11 

COBYLA [iteration: 1000] 94.70 92.50 

AQGD [iteration: 1000; momentum=0.25] 92.17 91.74 

NFT 92.89 91.55 
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From the experimental results we can see that the combination of the encoding method and the optimization method 

gives varying accuracy results, including: In the table with ZFeatureMap, the COBYLA optimization method gives 

the highest accuracy results in testing with 91.23%, while ADAM is lower with 79.57%. ZZFeatureMap provides 

significant accuracy improvements over almost all optimization methods, with COBYLA reaching 91.89%. The 

EfficientSU2 encoding method shows the highest results with COBYLA optimization achieving training accuracy of 

94.70% and testing accuracy of 92.50%. 

The encoding method in quantum models functions to convert classical data (such as image or numerical features) 

into a form that can be processed by a quantum system. Each encoding method has different characteristics in how 

they map data into quantum space. In ZFeatureMap: This encoding projects classical data into quantum Hilbert space 

using rotation about the Z axis of the qubit. This approach is suitable for data with simple patterns because it relies on 

amplitude-based representations, but may not be powerful enough to handle higher data complexity or more 

complicated non-linear relationships between features. In ZZFeatureMap: This encoding incorporates interactions 

between qubits (for example, interactions between two qubits via entanglement operations). This allows modeling 

more complex relationships among data features, resulting in the ability to handle data with more complex patterns. 

That's why this method produces higher accuracy compared to ZFeatureMap in most scenarios. In EfficientSU2: This 

method uses more complex unitary transformations, which allows encoding information in a more efficient and 

flexible way. With EfficientSU2, quantum systems can better capture variations in features and patterns in data, often 

leading to superior performance. This is also the reason why the highest accuracy in experimental results is produced 

by EfficientSU2 encoding. The complexity of the features that can be captured by different encoding methods. 

Methods that involve more inter-qubit interactions, such as ZZFeatureMap and EfficientSU2, are better at capturing 

complex patterns in the data, which in turn improves model accuracy. 

ADAM (Adaptive Moment Estimation) is a popular optimization method due to its ability to adaptively adjust the 

learning rate based on the first (mean) and second (variance) moments of the gradient. However, in the context of 

QCNN, ADAM can sometimes get stuck in local minima, especially when working with quantum data that have more 

complex loss functions. This explains why ADAM does not always produce the highest accuracy, especially on more 

complex encodings like EfficientSU2. COBYLA (Constrained Optimization By Linear Approximations) is a 

constraint-based optimization method that does not use gradients, so it is more robust in dealing with optimization 

fields that are not smooth. This makes COBYLA able to avoid local minima traps and find better solutions in complex 

parameter spaces, especially in the case of complex encodings such as ZZFeatureMap and EfficientSU2. Therefore, 

this method often produces the highest accuracy in QCNN testing. Adaptive Quantum Gradient Descent (AQGD) 

adds momentum to the gradient, which helps prevent oscillations and accelerates convergence. Even though the 

performance is quite stable, momentum that is too high or low can cause the model to converge too slowly or actually 

miss the optimal solution, which can explain why AQGD does not always provide the highest accuracy. NFT is another 

non-gradient optimization method often used in quantum optimization. Although quite good at finding optimal 

solutions, these methods can be slow in some situations or tend to converge to non-optimal solutions if the search 

space is too large or complex. 

Some optimization methods, such as COBYLA, excel at handling the more complex and non-smooth loss fields 

that often arise in quantum modeling. This method not only relies on gradient information but also uses a more flexible 

linear approximation approach, making it more effective in finding global solutions than methods such as ADAM 

which tend to rely more on gradients and can get trapped in local minima. The interaction between the encoding 

method and the optimization method also has a significant effect on the accuracy results. More complex encodings 

such as EfficientSU2 or ZZFeatureMap map data into a quantum space with larger dimensions and are more 

interactive, so the optimization field is also more complicated. Therefore, more robust optimization methods such as 

COBYLA tend to perform better on more complex encodings because they are able to handle greater terrain variations 

without relying on gradients. In contrast, simpler encoding methods such as ZFeatureMap have an easier field of 

optimization, whereas gradient methods such as ADAM may be quite efficient, although the results are not as good 

as those with more complex encodings. 

CONCLUSIONS 

The varying accuracy results in each experiment are caused by the complexity of the data captured by the encoding 

method and the effectiveness of the optimization method in finding the optimal solution. More sophisticated encodings 
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are able to capture more complex patterns in the data, while optimization methods that are more robust in dealing with 

complex parameter spaces tend to provide higher accuracy. 
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